Разработчики: | Cognitive Technologies (Когнитивные технологии) |
Дата премьеры системы: | 2017/04/06 |
Отрасли: | Транспорт |
Технологии: | Интернет вещей Internet of Things (IoT) |
Cognitive Data Fusion - технология для использования в модели компьютерного зрения комбинированных данных, поступающих от различных сенсоров на вычислительный блок.
6 апреля 2017 года компания Cognitive Technologies объявила о создании технологии Cognitive Data Fusion.
![]() | В решениях многих зарубежных разработчиков систем автономного вождения обработка данных, как правило, ведется по принципу on-chip - непосредственно на чипах, которые установлены на различных сенсорах, что затрудняет комплексное использование и обработку информации, поступающей со всех датчиков. Это было бы равносильно тому, если зрение и слух у человека не были синхронизированы и не дополняли друг друга. Представьте, что машиной управляют одновременно слепой человек, который слышит и зрячий, но глухой. И еще при этом они между собой не коммуницируют. Юрий Минкин, руководитель департамента разработки беспилотных автомобилей Cognitive Technologies | ![]() |
Как правило, данные полученные от радара позволяют определять точное расстояние до объекта и его скорость, но это лишь часть информации о его типе и расположении. Для принятия решения об опасности ситуации также важен тип объекта, его размеры, другие параметры. Радар может достаточно точно распознать машину и "засомневаться" в узнавании пешехода. Также радар, по сути, не позволяет определять отдельные элементы дорожной сцены, такие как дорожные знаки, разметку и т.д. Информация, полученная с видеокамеры, в свою очередь, дает достаточно точные координаты объекта, представление о его типе, и взаимном расположении относительно других объектов. А также позволяет детектировать больший класс объектов дорожной сцены (сигналы светофора, типы знаков, дорожную разметку и т.д.) [1].
Интеграция данных, полученных от различных устройств, позволяет восполнить недостающую для понимания действующей дорожной сцены информацию. Например, при уровне распознавания изображения объекта, полученного с видеокамеры, в 80%, данные, полученные от радара, могут дополнить недостающую информацию и поднять точность детекции до 99% и более процентов. Комплексное использование данных также позволяет объединить всю информацию о скорости, координатах, расстоянии до объекта, его типе, взаимном расположении, наличии других объектов в непосредственной близости от него и их физических характеристиках. Нужны ли роботы складам? Опрос участников рынка и мнения экспертов
Задача глубокой интеграции данных, полученных от разных сенсоров довольно сложная. Принцип действия технологии Cognitive Data Fusion аналогичен тому, как функционирует мозг человека, получающий данные от различных органов чувств: зрения, слуха, тактильных органов и т.д. одновременно. Для этого информация, снятая с каждого из датчиков синхронизируется и приводится к единой системе координат. Затем, «сырые» данные поступают в вычислитель, где они комплексно обрабатываются взаимно «обогащая» друг друга.
Этот подход позволяет реализовать компенсаторную функцию - когда один из органов чувств человека отказывает или выполняет свои функции не в полном объеме, активность других усиливается. Аналогичным образом в таких случаях архитектура Cognitive Data Fusion предусматривает возможность получения более детальных данных о дорожной сцене от других сенсоров. Например, если сигнал от радара детектирует препятствие на пути автомобиля, а видеокамера по каким-либо причинам его четко не распознает, искусственный интеллект оценит эту ситуацию, как проблемную и затребует более детальную информацию от видеокамеры.
![]() | Технология Cognitive data fusion уже апробирована на тысячах километрах российских дорог. Мы уверены, что ее внедрение позволит снизить уровень аварийности беспилотного автомобиля на 20%-25%. Ольга Ускова, президент Cognitive Technologies | ![]() |
Робототехника
- Роботы (робототехника)
- Робототехника (мировой рынок)
- Обзор: Российский рынок промышленной робототехники 2019
- Карта российского рынка промышленной робототехники
- Промышленные роботы в России
- Каталог систем и проектов Роботы Промышленные
- Топ-30 интеграторов промышленных роботов в России
- Карта российского рынка промышленной робототехники: 4 ключевых сегмента, 170 компаний
- Технологические тенденции развития промышленных роботов
- В промышленности, медицине, боевые (Кибервойны)
- Сервисные роботы
- Каталог систем и проектов Роботы Сервисные
- Collaborative robot, cobot (Коллаборативный робот, кобот)
- IoT - IIoT - Цифровой двойник (Digital Twin)
- Компьютерное зрение (машинное зрение)
- Компьютерное зрение: технологии, рынок, перспективы
- Как роботы заменяют людей
- Секс-роботы
- Роботы-пылесосы
- Искусственный интеллект (ИИ, Artificial intelligence, AI)
- Обзор: Искусственный интеллект 2018
- Искусственный интеллект (рынок России)
- Искусственный интеллект (мировой рынок)
- Искусственный интеллект (рынок Украины)
- В банках, медицине, радиологии, ритейле, ВПК, производственной сфере, образовании, Автопилот, транспорте, логистике, спорте, СМИ и литература, видео (DeepFake, FakeApp), музыке
- Национальная стратегия развития искусственного интеллекта
- Национальная Ассоциация участников рынка робототехники (НАУРР)
- Российская ассоциация искусственного интеллекта
- Национальный центр развития технологий и базовых элементов робототехники
- Международный Центр по робототехнике (IRC) на базе НИТУ МИСиС
- Машинное обучение, Вредоносное машинное обучение, Разметка данных (data labeling)
- RPA - Роботизированная автоматизация процессов
- Видеоаналитика (машинное зрение)
- Машинный интеллект
- Когнитивный компьютинг
- Наука о данных (Data Science)
- DataLake (Озеро данных)
- BigData
- Нейросети
- Чатботы
- Умные колонки Голосовые помощники
- Безэкипажное судовождение (БЭС)
- Автопилот (беспилотный автомобиль)
- Беспилотные грузовики
- Беспилотные грузовики в России
- В мире и России
- Летающие автомобили
- Электромобили
Подрядчики-лидеры по количеству проектов
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
Распределение вендоров по количеству проектов внедрений (систем, проектов) с учётом партнёров
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
Распределение систем по количеству проектов, не включая партнерские решения
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)