Microsoft DeepSpeed

Продукт
Разработчики: Microsoft
Дата премьеры системы: сентябрь 2020 г
Технологии: Средства разработки приложений

2020: Анонс Microsoft DeepSpeed - инструмента для глубокого обучения моделей ИИ

В середине сентября 2020 года Microsoft представила на GitHub обновленную открытую версию библиотеки DeepSpeed. Она предназначена для оптимизации глубокого обучения моделей искусственного интеллекта (ИИ).

Как сообщает издание SiliconANGLE, уникальность решения DeepSpeed заключается в том, что она способна обучать модели ИИ на основе триллиона различных параметров. В Microsoft отмечают, что используемый разработчиками DeepSpeed метод, который получил название 3D-параллелизм, адаптируется к различным требованиям пользовательских решений, включая взаимодействие с огромными моделями, сохраняя при этом баланс и эффективность в масштабировании.

Microsoft выпустила открытый инструмент для глубокого обучения на основе триллиона параметров

Проблема, для решения которой был создан продукт DeepSpeed, заключается в том, что разработчики могут оснастить свои нейронные сети только таким количеством параметров, которое может обрабатывать их инфраструктура обучения ИИ. Другими словами, аппаратные ограничения являются препятствием для создания более масштабных и лучших моделей. DeepSpeed делает процесс обучения ИИ более эффективным на аппаратном уровне. Разработчики могут повысить уровень сложности создаваемого ими программного обеспечения ИИ без необходимости покупать дополнительную инфраструктуру.

Microsoft заявляет, что этот инструмент может обучать языковую модель с триллионом параметров с использованием 100 видеокарт Nvidia предыдущего поколения V100. Обычно, по заявлению компании, на выполнение этой задачи у 4000 видеокарт Nvidia A100 текущего поколения требуется 100 дней. И это при том, что A100 в 20 раз быстрее, чем V100.Российский рынок облачных ИБ-сервисов только формируется 2.4 т

Microsoft заявляет, что даже если используемое оборудование будет сокращено до одного чипа V100, DeepSpeed все равно сможет обучить языковую модель с 13 миллиардами параметров. Для сравнения: самая большая языковая модель в мире имеет около 17 миллиардов параметров, а самая большая нейронная сеть в целом насчитывает около 175 миллиардов.[1]

Примечания



Подрядчики-лидеры по количеству проектов

За всю историю
2021 год
2022 год
2023 год
Текущий год

  Солар (ранее Ростелеком-Солар) (46)
  Финансовые Информационные Системы (ФИС, FIS, Финсофт) (15)
  Форсайт (11)
  Бипиум (Bpium) (10)
  Axiom JDK (БеллСофт) ранее Bellsoft (10)
  Другие (393)

  Солар (ранее Ростелеком-Солар) (8)
  Финансовые Информационные Системы (ФИС, FIS, Финсофт) (4)
  Консом групп, Konsom Group (КонсОМ СКС) (2)
  ЛАНИТ - Би Пи Эм (Lanit BPM) (2)
  IFellow (АйФэлл) (2)
  Другие (30)

  Солар (ранее Ростелеком-Солар) (10)
  Форсайт (3)
  Banks Soft Systems, BSS (Бэнкс Софт Системс, БСС) (3)
  КРИТ (KRIT) (2)
  Cloud.ru (Облачные технологии) ранее SberCloud (2)
  Другие (13)

  Солар (ранее Ростелеком-Солар) (6)
  МТС Exolve (Межрегиональный ТранзитТелеком, МТТ) (4)
  Unlimited Production (Анлимитед Продакшен, eXpress) (4)
  РЖД-Технологии (3)
  Robin (Робин) (3)
  Другие (23)

  Unlimited Production (Анлимитед Продакшен, eXpress) (4)
  Солар (ранее Ростелеком-Солар) (3)
  МТС Exolve (Межрегиональный ТранзитТелеком, МТТ) (2)
  РеСолют (1)
  Сбербанк-Технологии (СберТех) (1)
  Другие (11)

Распределение вендоров по количеству проектов внедрений (систем, проектов) с учётом партнёров

За всю историю
2021 год
2022 год
2023 год
Текущий год

  Солар (ранее Ростелеком-Солар) (2, 48)
  Microsoft (41, 47)
  Oracle (49, 26)
  Hyperledger (Open Ledger Project) (1, 23)
  IBM (33, 18)
  Другие (606, 308)

  Солар (ранее Ростелеком-Солар) (1, 8)
  Финансовые Информационные Системы (ФИС, FIS, Финсофт) (1, 4)
  Microsoft (4, 3)
  Oracle (2, 3)
  SAP SE (2, 2)
  Другие (16, 19)

  Солар (ранее Ростелеком-Солар) (1, 11)
  Banks Soft Systems, BSS (Бэнкс Софт Системс, БСС) (1, 3)
  Форсайт (1, 3)
  Сбербанк (1, 2)
  Cloud.ru (Облачные технологии) ранее SberCloud (1, 2)
  Другие (9, 9)

  Unlimited Production (Анлимитед Продакшен, eXpress) (1, 6)
  Солар (ранее Ростелеком-Солар) (1, 6)
  Мобильные ТелеСистемы (МТС) (1, 4)
  МТС Exolve (Межрегиональный ТранзитТелеком, МТТ) (1, 4)
  Robin (Робин) (1, 3)
  Другие (14, 24)

  Unlimited Production (Анлимитед Продакшен, eXpress) (1, 4)
  Мобильные ТелеСистемы (МТС) (2, 3)
  Солар (ранее Ростелеком-Солар) (1, 3)
  МТС Exolve (Межрегиональный ТранзитТелеком, МТТ) (1, 2)
  РеСолют (1, 1)
  Другие (14, 14)

Распределение систем по количеству проектов, не включая партнерские решения

За всю историю
2021 год
2022 год
2023 год
Текущий год

  Solar appScreener (ранее Solar inCode) - 48
  Hyperledger Fabric - 23
  Windows Azure - 20
  FIS Platform - 15
  EXpress Защищенный корпоративный мессенджер - 12
  Другие 328

  Solar appScreener (ранее Solar inCode) - 8
  FIS Platform - 4
  Парадокс: MES Builder - 2
  Java - 2
  Siemens Xcelerator - 2
  Другие 22

  Solar appScreener (ранее Solar inCode) - 11
  BSS Digital2Go - 3
  Форсайт. Мобильная платформа (ранее HyperHive) - 3
  Cloud ML Space - 2
  Tarantool Data Grid - 1
  Другие 8

  EXpress Защищенный корпоративный мессенджер - 6
  Solar appScreener (ранее Solar inCode) - 6
  МТС Exolve - 4
  Форсайт. Мобильная платформа (ранее HyperHive) - 3
  РЖД и Робин: Облачная фабрика программных роботов - 3
  Другие 14

  EXpress Защищенный корпоративный мессенджер - 4
  Solar appScreener (ранее Solar inCode) - 3
  МТС Exolve - 2
  Naumen Platform - 1
  YandexART - 1
  Другие 11