Название базовой системы (платформы): | Amazon Web Services (AWS) |
Разработчики: | Amazon |
Дата премьеры системы: | 2015/10/14 |
Дата последнего релиза: | 2019/03/18 |
Технологии: | PaaS - Platform As A Service - Бизнес-платформа как сервис, Интернет вещей Internet of Things (IoT) |
Содержание[Свернуть] |
AWS IoT - управляемая облачная платформа IoT.
2019: Совместное решение Nvidia и Amazon на базе Jetson и AWS IoT Greengrass
Компания Nvidia 18 марта 2019 года объявила о сотрудничестве с компанией Amazon по платформе NVIDIA Jetson, чтобы наделить искусственным интеллектом и глубоким обучением миллионы подключенных устройств. Это совместное решение позволяет создавать, обучать и оптимизировать модели на AWS и затем их разворачивать на конечных устройствах на базе Jetson с помощью AWS IoT Greengrass.
Платформа NVIDIA Jetson предлагает возможности ИИ в конечном устройстве с высокопроизводительными и экономичными вычислениями. Она получила применение в автономных машинах и умных камерах в таких индустриях, как розница, производство, сельское хозяйство и другие, отметили в Nvidia.
AWS IoT Greengrass аккуратно переносит AWS на конечные устройства, включая инференс машинного обучения, чтобы можно было его применять локально к генерируемым данным, одновременно используя облако для управления, аналитики и надежного хранения. Устройства на базе Jetson выполняют инференс локально, чтобы получать результат практически мгновенно с помощью AWS IoT Greengrass. Затем данные отправляются назад в сервисы машинного обучения, такие как Amazon SageMaker, для повышения точности модели.
Jetson поставляется с полноценным набором программных инструментов и SDK, включая NVIDIA JetPack. Также поддерживаются различные фреймворки, такие как MXNet, Caffe, TensorFlow и PyTorch, позволяющие разработчикам использовать эти алгоритмы для быстрого развертывания приложений реального мира, утверждают в Nvidia.
![]() | «Jetson – это высокопроизводительный компьютер, построенный на той же архитектуре и унифицированном ПО, что и мощные суперкомпьютеры. Мы предлагаем маленький Jetson Nano в помощь к Jetson AGX Xavier, чтобы можно было масштабировать маленькие IoT устройства до мощных IoT шлюзов». Дипу Талла (Deepu Talla), вице-президент и директор по автономным машинам в NVIDIA | ![]() |
Как отметили в Nvidia, Jetson и AWS IoT Greengrass позволяют с легкостью разворачивать модели машинного обучения, оптимизированные для IoT устройств. Клиенты могут сэкономить трафик и расходы, выполняя инференс практически в реальном времени прямо на устройстве Jetson, а не отправляя данные в облако. Российский рынок CRM-систем: оценки, перспективы, крупнейшие поставщики. Обзор TAdviser
Согласно заявлению Nvidia, Jetson наделяет искусственным интеллектом приложения, ранее казавшиеся нереальными. В сельском хозяйстве камеры на базе Jetson с запущенным AWS IoT Greengrass могут находить сорняки практически в реальном времени, снимать ранее неопределенные сорняки, загружать аномалии в облако и быстро переобучать и разворачивать модель. Это сочетание технологий делает сельское хозяйство эффективнее и позволяет решать проблему достатка еды для растущего населения. Автоматическая оптическая проверка позволяет быстро определять дефекты в продуктах прямо на производстве, чтобы избежать задержек в работе конвейера. Это повышает продуктивность, минимизирует потери и, в конечном итоге, улучшает общую эффективность работы. В рознице устройства на базе Jetson могут проверять склады, отслеживать поведение покупателей и извлекать и обрабатывать данные на конечном устройстве, применяя AWS IoT Greengrass для развертывания обученных нейросетей. Это позволяет повысить эффективность работы и в рознице.
2015: Анонс платформы
14 октября 2015 года компания Amazon анонсировала сервис, который будет называться AWS IoT.
AWS IoT – управляемая облачная платформа, которая, по описанию разработчиков, «позволит подключенным устройствам легко и безопасно взаимодействовать с облачными приложениями и другими устройствами»[1].
Представление AWS IoT (2015)
На 15 октября 2015 года платформа IoT действует в бета-версии, будет способна поддерживать миллиарды устройств и обрабатывать триллионы сообщений, направляемых от устройств в AWS и другим устройствам. Её предстоит интегрировать с другими сервисами провайдера:
- Amazon Lambda,
- Kinesis,
- S3,
- Machine Learning
- DynamoDB.
Это позволит создавать приложения IoT, управлять инфраструктурой и анализировать данные. AWS IoT также предоставит SDK сторонним разработчикам приложений.
Стоимость IoT-сервиса, по аналогии с другими услугами Amazon Web Services, будет зависеть от числа сообщений (блоков данных по 512 байт), отправляемых в AWS, и сообщений, отсылаемых платформой устройствам или приложениям, без минимальных платежей. В качестве бонуса для пользователей экосистемы AWS в стоимость не включаются сообщения, отправленные сервисам Amazon, в частности S3, DynamoDB, Lambda, Kinesis, SNS и SQS. Плата, в зависимости от региона, составит от $5 до $8 за 1 млн сообщений.
Подрядчики-лидеры по количеству проектов
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
Распределение вендоров по количеству проектов внедрений (систем, проектов) с учётом партнёров
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
Распределение систем по количеству проектов, не включая партнерские решения
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
Подрядчики-лидеры по количеству проектов
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
Данные не найдены
Распределение вендоров по количеству проектов внедрений (систем, проектов) с учётом партнёров
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
Данные не найдены
Распределение систем по количеству проектов, не включая партнерские решения
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)