Разработчики: | Российские космические системы (РКС) |
Дата премьеры системы: | 2022/02/02 |
Отрасли: | Космическая отрасль |
Технологии: | Спутниковая связь и навигация |
Основная статья: Космические спутники стран мира
2022: Создание технологии сжатия передаваемых со спутников данных
2 февраля 2022 года компания «Российские космические системы» (РКС, входит в Госкорпорацию «Роскосмос») сообщила, что ее инженеры создают специальный математический алгоритм, который будет в 10 раз сжимать данные, передаваемые со спутников дистанционного зондирования Земли (ДЗЗ). Это российское техническое решение позволит без затрат на внедрение дополнительных бортовых приборов и модулей увеличить объемы и скорость передаваемой с орбиты информации. Технология может быть реализована с помощью разработанных в РКС «умных» сверхбольших интегральных микросхем.
С развитием спутниковых систем ДЗЗ увеличились объемы данных, получаемых с космических аппаратов, что повышает требования к их бортовой аппаратуре. В первую очередь это касается характеристик высокоскоростных радиолиний: именно от них зависит скорость передачи и объем информации. На начало февраля 2022 года скорость уже достигла нескольких гигабит в секунду, но это предел, тогда как для перспективных систем требуется увеличение пропускной способности.
В компьютерах, интернете, смартфонах, фотоаппаратах, видеокамерах используется множество алгоритмов сжатия данных – ZIP, RAR, BZip2, JPEG/JPEG2000. Однако в космической технике они широкого распространения не получили, так как сжатая информация, переданная по радиолинии, при последующем декодировании дает большой процент ошибок. Чтобы этого избежать, требуется обработка высокоскоростных потоков информации с помощью высокопроизводительных вычислительных ресурсов, но для бортовой аппаратуры спутников они весьма ограничены. Российский рынок CRM-систем: оценки, перспективы, крупнейшие поставщики. Обзор TAdviser
Добиться повышения характеристик обычными методами невозможно - актуальные высокоскоростные радиолинии практически достигли границы Шеннона (ограничения максимальной скорости передачи данных через канал с заданным уровнем помех). Для увеличения пропускной способности и передачи больших объемов информации требуется внедрение дополнительных бортовых приборов и модулей, что ведет к увеличению стоимости космического аппарата, веса и энергопотребления при прочих равных условиях, а также может понизить общую надежность бортовой аппаратуры радиолинии. В условиях ограниченности бортовых ресурсов такой вариант является крайне нежелательным или вовсе недопустимым.
![]() | «Альтернативой станет разработка специальных адаптируемых и гибких алгоритмов сжатия данных, учитывающих специфику бортовой аппаратуры космического назначения. Такой алгоритм может быть внедрен на космических аппаратах ДЗЗ, в том числе передающих на Землю большие объемы данных типа «Ресурс», «Кондор», поскольку наиболее перспективной является технология сжатия оптических снимков, которые занимают наибольший объем передаваемой информации и поддаются сжатию без потерь», - говорит начальник отделения разработки цифро-аналоговой аппаратуры РКС Александр Мордвинов. | ![]() |
Создаваемая в РКС технология позволит без изменения конструкции космических аппаратов ДЗЗ увеличить объем передаваемой информации от 1,2 до 10 раз. Подобные алгоритмы применяются в некоторых зарубежных космических аппаратах, но они обрабатывают данные либо с потерями, либо с низкой степенью сжатия. Российские инженеры будут использовать специальный адаптивный математический алгоритм, который позволит непосредственно на орбите архивировать передаваемую космическими аппаратами информацию, значительно уменьшая ее размер.
Технология разрабатывается с учетом особенностей оптико-электронной аппаратуры, структур передаваемых данных, а также методов и алгоритмов их сжатия. Это позволит при увеличении скорости и объемов передачи данных избежать потери информации. Электронно-компонентная база, производимая в том числе холдингом РКС, позволяет эффективно реализовать это техническое решение с помощью вычислительных мощностей на борту космических аппаратов.
Смотрите также
Подрядчики-лидеры по количеству проектов
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
Данные не найдены
Распределение вендоров по количеству проектов внедрений (систем, проектов) с учётом партнёров
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
Данные не найдены
Распределение систем по количеству проектов, не включая партнерские решения
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)